spacer
spacer

Blind Orion HEADER

Ada Lovelace portrait

Ada Lovelace was a pioneering scientist and mathematician who has become known as the first computer programmer for her work on Charles Babbage’s Analytical Machine.

Born Augusta Ada Byron on December 10th, 1815, Ada Lovelace was the son of Lord Byron, the famous poet, and his aristocratic wife Annabella Milbanke Byron. Their marriage was far from happy and the two separated only two months after Ada’s birth. Lord Byron moved abroad, first to Italy, then to Greece, before dying of infection during the Greek War of Independence against the Ottomans when Ada was only eight years old.

Annabelle Byron was a distant and highly religious mother, leaving most of Ada’s childhood in the hands of servants. One thing she did insist on was a scientific and mathematic education for her daughter, partly because it was her passion, and partly because she felt it would prevent Ada from falling into the ‘insanity’ she thought Lord Byron had succumbed to.

It was in 1833 that Ada’s life changed, as through her tutor and noted science educator Mary Somerville Ada was introduced to Charles Babbage, the man known as the inventor of the first computer. Babbage showed her and her mother a model of his Difference Engine, a steam or hand cranked device that was intended to make objective mathematical calculations by leaving human beings out of the process entirely. The idea of such a machine seems to have had a profound effect on Ada, although it would be almost ten years before she would revisit the topic.

Ada Lovelace

During the 1830’s Ada was married to Baron William King, becoming Countess of Lovelace in the process. Lovelace’s fascination with maths only grew, and in 1943 she embarked upon the writing for which she is best known. In 1940 Babbage had given a seminar at the University of Turin that discussed his Analytical Engine. A young Italian Engineer named Lugui Menabrea transcribed the seminar in French, and a friend of Babbage’s named Charles Wheatstone commissioned Lovelace to translate the paper into English.

This Lovelace did over the course of a year, adding to the translation a series of her own notes. According to some sources the resultant article was over three times as long as the original, and Lovelace’s additions formed the major part of the overall work.

Lovelace’s fame comes from the seventh note she attached to the article, note G, in which she describes an algorithm for the Analytical Engine that would allow it to compute Bernoulli numbers. This is generally considered the first ever algorithm intended for use on a computing device and is the basis for the claim that Lovelace was the ‘first computer programmer’. Her work was well received within the scientific community, earning praise from eminent scientists including Michael Faraday. Babbage himself referred to her during this period with a title that has become her moniker, that of the ‘Enchantress of Number’.

The extent to which Babbage, who helped Lovelace with her translation and notes, had influence over the writing of note G is a subject of much scholarly dispute, with some scholars arguing that Lovelace’s contribution to the development of the Analytical Machine and related ideas was in fact minimal.

573px Ada Lovelace color.svg

This being said, what almost all agree on is the visionary quality with which Lovelace viewed the possibilities of a machine such as the Analytical Engine. According to Computing Historian and Babbage Specialist Doron Swane:

Ada saw something that Babbage in some sense failed to see. In Babbage's world his engines were bound by number...What Lovelace saw—was that number could represent entities other than quantity. So once you had a machine for manipulating numbers, if those numbers represented other things, letters, musical notes, then the machine could manipulate symbols of which number was one instance, according to rules. It is this fundamental transition from a machine which is a number cruncher to a machine for manipulating symbols according to rules that is the fundamental transition from calculation to computation—to general-purpose computation—and looking back from the present high ground of modern computing, if we are looking and sifting history for that transition, then that transition was made explicitly by Ada in that 1843 paper.

Lovelace died tragically young from uterine cancer, aged only 36. Her short life, combined no doubt with the issues she faced as a women in the 19th century, meant that beyond her translation she has left little work for future generations to discover. Still, her impact on science has been immortalised in Ada Lovelace Day, the second Tuesday of October, where the contributions of women to science, technology, engineering, and mathematics are honoured.

 

'Understand well as I may, my comprehension can only be an infinitesimal fraction of all I want to understand' - Ada Lovelace (1815-1852)

 

spacer
spacer
SocialTwist Tell-a-Friend
instagram fb icon 325x325 twitter

  

 

spacer

Copyright © 2009 Smart-e (UK) Ltd. All Rights Reserved - VAT Registration No. 725 363046 - Registered in England & Wales No. 3885453.

spacer